THE ELECTRONIC EFFECT OF THE TRICYANOMETHYL GROUP BY ¹⁹F NUCLEAR MAGNETIC RESONANCE.

A CONSEQUENCE OF ALTERNATING INDUCED CHARGE (AIC).

```
W. Adcock* and D. P. Cox
```

(School of Physical Sciences, The Flinders University of South Australia, Bedford Park, S.A. 5042. Australia)

(Received in UK 7 June 1976; accepted for publication 14 June 1976)

Sheppard and co-workers¹ have employed Taft's methodology² in order to assess the electronic effect of the tricyanomethyl group. Besides demonstrating that this substituent is one of the strongest neutral inductive electron-withdrawing groups known ($\sigma_{\rm I}$ = 0.98), the analysis indicated quite unexpectedly that the substituent has a negligible resonance effect ($\sigma_{\rm R}^{\rm o}$ = ± 0.02). The major significance of this result is that it militates against the m-inductive effect being the electronic mechanism by which a trifluoromethyl group polarizes an adjacent aromatic system ¹.

More recently³, we disclosed that the fluorophenyl tag used in the Taft approach can be bedevilled by certain factors (substituent-induced structural effects, substituent-probe interactions, and σ - and π -electron effects), depending on the nature of the substituent under investigation, which are readily circumvented by employing 6- and 7-substituted β -fluoronaphthalenes (6 β and 7 β dispositions respectively) and their respective dual substituent parameter (DSP) correlative equations. In the light of this relevation, and since the electronic effect of the trifluoromethyl group is still a subject of much interest and continuing controversy, 4,5 we believed a re-examination of the tricyanomethyl group utilizing the fluoronaphthyl probe was warranted. Accordingly, we have synthesized and measured the ¹⁹F nmr spectra⁶ of 6- and 7-C(CN)₃-substituted β -fluoronaphthalenes as well as 1-fluoro-4-tricyanomethylnaphthalene (4 α disposition). The results are shown in the table.

Table ¹⁹F Substituent Chemical Shifts (SCS)^{a,b,c} for C(CN)_z-Substituted Fluoronaphthalenes.

Dis

sposition	Solvent	
	Benzene	DMF
6β	-5.22	-4.66
7β	-3.89	-3.55
4α	-8.74	-8.76

a. Defined as the difference between the chemical shift of the unsubstituted fluoroaromatic and the substituted fluoroaromatic compound. b. In ppm. c. A negative sign implies deshielding.

Substituent parameters dissected from this data by means of the 6 β and 7 β DSP correlative³ equations are as follows: σ_{I} (benzene) = 0.91; σ_{R}^{0} (benzene) = -0.097; σ_{I} (DMF) = 0.81; σ_{R}^{0} (DMF) = -0.098. These parameters can then be employed to calculate SCS [-7.97(ppm;DMF); -8.01(ppm; Benzene)] for the sterically hindered 4 α orientation by substitution in the appropriate DSP correlative equations for this disposition.³

Several important conclusions follow from these results. Firstly, it is obvious that the substituent parameters are significantly different from those previously determined. Moreover, the fact that the calculated $^{19}\mathrm{F}$ SCS for the 4α orientation are in reasonable agreement with the

observed values (Table), given that SCS in this disposition are influenced in a minor way by geometrical factors (approx., 1 ppm downfield)³, attests to their validity.

Secondly, note that the sign of σ_R^o is <u>negative</u>! This suggests that the C(CN)₃ substituent has an apparent electron-donating mesomeric effect comparable in magnitude to that observed for $CH_3(\sigma_R^o = -0.11)^7$ in the neutral ground state. Since possible π -polarisation by the π -inductive effect in terms of induced charges either by the classical σ -inductive model or the alternating induced charge model (AIC)⁸ can only be envisaged as an electron-withdrawing influence, the observed result must be ascribed to hyperconjugation. Hence, according to the specific requirements for $\sigma-\pi$ conjugation⁹, electron-donation by the C(CN)₃ group demands that the carbon atom directly attached to the aromatic ring must bear a formal negative charge. This induced charge is theoretically respectable only in terms of the AIC model since the classical σ -inductive model predicts the reverse polarity for the interacting o-bonds which would favour electron-withdrawal involving the anti-bonding molecular orbitals⁹ of the C(CN)₃ substituent i.e. σ_R^0 would be positive.

We believe the <u>negative</u> σ_R^0 value for $C(CN)_3$ is the most convincing experimental evidence to date in support of the AIC model for a saturated carbon chain¹⁰.

Thirdly, an important corollary of the AIC model is that the positive σ_R^0 value (0.08; electron-withdrawal)⁷ for the trifluoromethyl substituent must have its origin in hyperconjugation and not the π -inductive effect. This conclusion obviously follows from a consideration of the induced charges by this model; whereas σ - π conjugation would be manifested by electron-withdrawal, the π -inductive effect would lead to apparent electron-donation. It is important to note that a recent ESCA study of trifluoromethylbenzenes has led to the same conclusion.⁵ Thus our suggestion³ in favour of the π -inductive effect for the CF₃ group requires reappraisal along the lines presented here.

References and Notes

- J.K. Williams, E.L. Martin, and W.A. Sheppard, J.Org.Chem., <u>31</u>, 919 (1966); W.A. Sheppard and R.M. Henderson, J.Amer.Chem.Soc., <u>89</u>, 4446 (1967). 1.
- R.W. Taft, E. Price, I.R. Fox, I.C. Lewis, K.K. Andersen, and G.T. Davis, <u>J.Amer.Chem.Soc.</u>, 85, 709, 3146 (1963) and references cited therein. 2.
- 3.
- No. Adcock, J. Alste, S.Q.A. Rizvi, and M. Aurangzeb, J.Amer.Chem.Soc., 98, 1701 (1976).
 For a review and references see D. Holtz, Chem.Rev., 71, 139 (1971); J.D. Hepworth,
 J.A. Hudson, D.A. Ibbitson, and G. Hallas, J.C.S. Perkin 11 1905 (1972) and references cited therein; R.D. Chambers, J.A. Waterhouse, and D.L.H. Williams, Tetrahedron Letters,
 743 (1974); T.J. Broxton, D.G. Cameron, R.D. Topsom, and A.R. Katritzky, J.C.S. Perkin 11, 4. 256 (1974) and references cited therein. S.A. Holmes and T.D. Thomas, J.Amer.Chem.Soc., 97, 2337 (1975).
- 5.
- The fluorine NMR spectra were measured with a modified Varian DP60 operating at 56.4MHz 6. using solutions containing 10% (W/W) of the fluorine compound, together with 5% (W/W) of 1,1,2,2-tetrachloro-3,3,4,4-tetrafluorocyclobutane (TCTFB).
- S. Ehrenson, R.T.C. Brownlee, and R.W. Taft, Progr. Phys. Org. Chem., 10, 1 (1973). J.A. Pople and M. Gordon, J.Amer. Chem. Soc., 89, 4253 (1967). 7.
- 8.
- 9.
- C.G. Pitt, J.Organometal.Chem., 61, 49 (1973) and references cited therein. L.F. Blackwell, P.D. Buckley and K.W. Jolley, <u>Tetrahedron Letters</u>, 4271 (1975) have recently interpreted inverse substituent effects by ¹⁰C mmr chemical shifts as evidence for the AFC model in a saturated carbon chain. However, we believe this interpretation is dubious since ¹⁰F chemical shifts have also been shown to display inverse substituent behaviour which is probably a manifestation of dominant bond order effects.¹¹,12 10.
- W. Adcock, M.J.S. Dewar, R. Golden, and M.A. Zeb, J.Amer.Chem.Soc., 97, 2198 (1975).
 R.W. Taft, F. Prosser, L. Goodman, and G.T. Davis, J.Chem.Phys., 38, 380 (1963).